Characterization of Ag Nanoparticles Produced by White-Rot Fungi and Its in vitro Antimicrobial Activities


  • Yen San Chan School of Chemical Engineering, Universiti Sains Malaysia
  • Mashitah Mat Don School of Chemical Engineering, Universiti Sains Malaysia


Ag nanoparticles, antimicrobial properties, disc diffusion assay, Pycnoporus sanguineus, Schizophyllum commune


Biosynthesis of Ag nanoparticles (AgNPs) with diameter ranging 50 to 80 nm is achieved using the white-rot fungi, Schizophyllum commune and Pycnoporus sanguineus. AgNPs were formed when the fungal mycelia and the supernatant reacted with AgNO3 after 5 days of incubation period. The synthesized nanoparticles were determined using analytical tools such as UV-vis spectrophotometer, and transmission electron microscopy. Results indicated that the UV-visible spectrum of the aqueous medium for S. commune and P. sanguineus showed a peak at 420 nm, which corresponded to the plasmon absorbance band of AgNPs. The antimicrobial properties of the synthesized AgNPs against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Aspergillus niger and Candida albicans were also investigated using disc diffusion assay. Minimum inhibition concentration, minimum bacterial concentration and minimum fungicidal concentration are also identified using 96-well microtitre plate. It was found that AgNPs synthesized by the Malaysian white-rot fungi has the ability to act as an effective antibacterial agent.


Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M. I., Kumar, R., et al. (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces B: Biointerfaces, 28(4), pp. 313-318.

Alexander, J. (2009). History of the Medical Use of silver. Surgical infections, 10(3), pp. 289-292.

Balaji, D. S., Basavaraja, S., Deshpande, R., Mahesh, D. B., Prabhakar, B. K., & Venkataraman, A. (2009). Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids and Surfaces B: Biointerfaces, 68(1), pp. 88-92.

Bhainsa, K. C., & D'Souza, S. F. (2006). Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids and Surfaces B: Biointerfaces, 47(2), pp. 160-164.

Brett, D. W. (2006). A discussion of silver as an antimicrobial agent: alleviating the confusion. Ostomy Wound Manage, 52, pp. 34-41.

Damm, C., Münstedt, H., & Rösch, A. (2008). The antimicrobial efficacy of polyamide 6/silver-nano- and microcomposites. Materials Chemistry and Physics, 108(1), pp. 61-66.

de Carvalho, C., & Caramujo, K. (2008). Ancient Procedures for the High-Tech World: Health Benefits and Antimicrobial Compounds from the Mediterranean Empires. The Open Biotechnology Journal 2, pp. 235-246.

Dias, M. A., Lacerda, I. C. A., Pimentel, P. F., De Castro, H. F., & Rosa, C. A. (2002). Removal of heavy metals by an Aspergillus terreus strain immobilized in a polyurethane matrix. Letters in Applied Microbiology, 34, pp. 46-50.

Dulger, G., & Aki, C. (2009). Antimicrobial Activity of the Leaves of Endemic Stachys pseudopinardii in Turkey. Tropical Journal of Pharmaceutical Research, 8(4), pp. 371-375.

Duran, N., Marcato, P., Alves, O., De Souza, G., & Esposito, E. (2005). Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. Journal of Nanobiotechnology, 3(1), pp. 8.

Duran, N., Marcato, P. D., Alves, O. L., Souza, G. I., & Esposito, E. (2005). Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. Journal of Nanobiotechnology, 3, pp. 8.

Elechiguerra, J., Burt, J., Morones, J., Camacho-Bragado, A., Gao, X., Lara, H., et al. (2005). Interaction of silver nanoparticles with HIV-1. Journal of Nanobiotechnology, 3(1), pp. 6.

Gu, H., Ho, P. L., Tong, E., Wang, L., & Xu, B. (2003). Presenting Vancomycin on Nanoparticles to Enhance Antimicrobial Activities. Nano Letters, 3(9), pp. 1261-1263.

Henglein, A. (1993). Physiochemical properties of small metal particles in solution: "microelectrode" reaction, chemisorption, composite metal particles and the atom-to-metal transition. Journal of Physical Chemistry B, 7, pp. 5457-5471.

Hidalgo, E., & Dominguez, C. (1998). Study of cytotoxicity mechanisms of silver nitrate in human demal fibroblasts. Toxicol Lett, 15(98), pp. 169-179.

Joerger, R., Klaus, T., & Granqvist, C. G. (2000). Biologically produced silver-carbon composite materials for optically functional thin-film coatings. Adv Mater, 12, pp. 407 - 409.

Kalishwaralal, K., Deepak, V., Ramkumarpandian, S., Nellaiah, H., & Sangiliyandi, G. (2008). Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Materials Letters, 62(29), pp. 4411-4413.

Kaviya, S., Santhanalakshmi, J., Viswanathan, B., Muthumary, J., & Srinivasan, K. (2011). Biosynthesis of silver nanoparticles using citrus sinensis peel extract and its antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79(3), pp. 594-598.

Kim, J. S., Kuk, E., Yu, K. N., Kim, J. H., Park, S. J., Lee, H. J., et al. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine, 3, pp. 95 - 101.

Koopmans, R. J., & Amalia, A. (2010). Nanobiotechnology -quo vadis? Current Opinion in Microbiology, 13, pp. 327-334.

Kreibig, U. (1978). Electrochemical Synthesis of Silver Nanoparticles. J. phy. Chem. B 2000, 104, pp. 9683-9688.

Kreibig, U., & Grenzel, L. (1985). Optical absorption of small metallic particles. Surface Science, 156, pp. 678-700.

Lehninger, A., BNelson, D., & Cox, M. (2011). Principles of Biochemistry (5th ed.). New York: Gray Scrimgeour and Marc Perry.

Martínez-Castañón, G., Niño-Martínez, N., Martínez-Gutierrez, F., Martínez-Mendoza, J., & Ruiz, F. (2008). Synthesis and antibacterial activity of silver nanoparticles with different sizes. Journal of Nanoparticle Research, 10(8), pp. 1343-1348.

McDowell, E. M., & Trump, B. F. (1976). Histologic fixatives suitable for diagnostic light and electron microscopy. Arch. Pathol. Lab. Med., 100, pp. 405-414.

Mohammed Fayaz, A., Girilal, M., Rahman, M., Venkatesan, R., & Kalaichelvan, P. T. (2011). Biosynthesis of silver and gold nanoparticles using thermophilic bacterium Geobacillus stearothermophilus. Process Biochemistry, 46(10), pp. 1958-1962.

Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S. R., Khan, M. I., et al. (2001). Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Lett, 1, pp. 515 - 519.

Naik, R. R., Stringer, S. J., Agarwal, G., Jones, S. E., & Stone, M. O. (2002). Biomimetic synthesis and patterning of silver nanoparticles. Nat Mater, 1, pp. 169 - 172.

Nanda, A., & Saravanan, M. (2009a). Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine: Nanotechnology, Biology and Medicine, 5(4), pp. 452-456.

Nanda, A., & Saravanan, M. (2009b). Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine: Nanotechnology, Biology and Medicine, 5, pp. 452-456.

Neal, A. (2008). What can be inferred from bacterium–nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology, 17(5), pp. 362-371.

Nithya, R., & Ragunathan, R. (2009). Synthesis of silver nanoparticles using Pleurotus sajor caju and its antimicrobial study. Dig. J. Nanomater. Biostruct., 4, pp. 623-629.

Ottow, J. C. G., & Von Klopotek, A. (1969). Enzymatic reduction of iron oxide by fungi. Appl Microbiol, 18, pp. 41 - 43.

Prathna, T. C., Chandrasekaran, N., Raichur, A. M., & Mukherjee, A. (2011). Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids and Surfaces B: Biointerfaces, 82(1), pp. 152-159.

Qi, L., Xu, Z., Jiang, X., Hu, C., & Zou, X. (2004). Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate Research, 339(16), pp. 2693-2700.

Rai, A., Singh, A. K., Ahmad, A., & Sastry, M. (2006). Langmuir. 22, 736-741, pp.

Sadhasivam, S., Shanmugam, P., & Yun, K. (2010). Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms. Colloids and surfaces. B, Biointerfaces, 81(1), pp. 358-362.

Sanghi, R., & Verma, P. (2009). Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresource technology, 100(1), pp. 501-504.

Schabes-Retchkiman, P. S., Canizal, G., Herrera-Becerra, R., Zorrilla, C., Liu, H. B., & Ascencio, J. A. (2006). Biosynthesis and characterization of Ti/Ni bimetallic nanoparticles. Optical Materials, 29(1), pp. 95-99.

Shahverdi, A. R., Fakhimi, A., Shahverdi, H. R., & Minaian, S. (2007). Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine, 3, pp. 168 - 171.

Shaligram, N. S., Bule, M., Bhambure, R., Singhal, R. S., Singh, S. K., Szakacs, G., et al. (2009). Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochemistry, 44(8), pp. 939-943.

Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci, 275, pp. 177 - 182.

Tyagi, A. K., & Malik, A. (2010). In situ SEM, TEM and AFM studies of the antimicrobial activity of lemon grass oil in liquid and vapour phase against Candida albicans. Micron, 41(7), pp. 797-805.

Veerasamy, R., Xin, T. Z., Gunasagaran, S., Xiang, T. F. W., Yang, E. F. C., Jeyakumar, N., et al. (2011). Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. Journal of Saudi Chemical Society, 15(2), pp. 113-120.

Velmurugan, N., Gnana Kumar, G., Sub Han, S., Suk Nahm, K., & Soo Lee, Y. (2009). Synthesis and Characterization of Potential Fungicidal Silver Nano-sized Particles and Chitosan Membrane Containing Silver Particles. Iranian Polymer Journal, 18(5), pp. 383-392.

Zahoor, A., Sharma, S., & Khuller, G. K. (2005). Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis. International Journal of Antimicrobial Agents, 26(4), pp. 298-303.