Antibacterial activity of selected varieties of Malaysian honey against Escherichia coli: A comparative study

Authors

  • Mohammad A. Alkafaween Faculty of Health Sciences; Universiti Sultan Zainal Abidin, Terengganu, Malaysia.
  • Hamid A. Nagi Al-Jamal
  • Abu Bakar Mohmd Hilmi

DOI:

https://doi.org/10.3823/854

Keywords:

Antibacterial activity, Minimum inhibitory concentration (MIC), Minimum bactericidal concentration (MBC), Time-kill curve, Malaysian honey, Escherichia coli, RT-qPCR

Abstract

Background: The purpose of this study was to investigate antibacterial activity of three varieties of Malaysian honey; Tualang honey (TH), Gelam honey (GH), and Acacia honey (AH) against Escherichia coli.

Methods: The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the honey samples against E. coli were determined by the broth microdilution assay in the presence and absence of catalase enzyme. The mode of inhibition of honey samples against E. coli was investigated by the effect of time on viability. Impacts of the honeys on the expression profiles of the selected genes of E. coli were examined using RT-qPCR analysis.

Results: The results showed that TH and GH honey possessed lowest MIC and MBC values against E. coli with 20% and 25% (w/v) respectively. Highest MIC and MBC values were observed by AH honey against E. coli with 25% (w/v) and 50% (w/v) values respectively. Among the tested honeys, TH and GH exhibited the highest total antibacterial activity and the highest levels of peroxide-dependent activity. Time–kill curve demonstrated a bactericidal rather than a bacteriostatic effect; with a 2-log reduction estimated within 540 min. Viable cells were not recovered after 9 hours exposure to MIC of all honey-treated. The RT-qPCR analysis showed that all honey-treated cells share a similar overall pattern of gene expression, with a trend toward reduced expression of the virulence genes of interest.

Conclusion: This study demonstrates that Malaysian honey have the potential to be effective inhibitor and virulence modulator of E. coli via multiple molecular targets.

References

Pećanac M, Janjić Z, KomarÄević A, Pajić M, DobanovaÄki D, MiÅ¡ković-Skeledžija S. Burns treatment in ancient times. Medicinski pregled. 2013;66(5-6):263-7.

Majtán J. Apitherapy--the role of honey in the chronic wound healing process. Epidemiologie, mikrobiologie, imunologie: casopis Spolecnosti pro epidemiologii a mikrobiologii Ceske lekarske spolecnosti JE Purkyne. 2009;58(3):137-40.

Vandamme L, Heyneman A, Hoeksema H, Verbelen J, Monstrey S. Honey in modern wound care: a systematic review. Burns. 2013;39(8):1514-25.

Lotfy M, Badra G, Burham W, Alenzi F. Combined use of honey, bee propolis and myrrh in healing a deep, infected wound in a patient with diabetes mellitus. British Journal of Biomedical Science. 2006;63(4):171-3.

Visavadia BG, Honeysett J, Danford MH. Manuka honey dressing: An effective treatment for chronic wound infections. British Journal of Oral and Maxillofacial Surgery. 2008;46(1):55-6.

Lusby PE, Coombes AL, Wilkinson JM. Bactericidal activity of different honeys against pathogenic bacteria. Archives of medical research. 2005;36(5):464-7.

Mundo MA, Padilla-Zakour OI, Worobo RW. Growth inhibition of foodborne pathogens and food spoilage organisms by select raw honeys. International journal of food microbiology. 2004;97(1):1-8.

Wasfi R, Elkhatib WF, Khairalla AS. Effects of selected Egyptian honeys on the cellular ultrastructure and the gene expression profile of Escherichia coli. PloS one. 2016;11(3).

Al-Maaini RAS. Honey as an antimicrobial agent against multi-drug resistant Gram negative bacterial rods: University of Wales; 2012.

Henriques A, Jenkins R, Burton N, Cooper R. The effect of manuka honey on the structure of Pseudomonas aeruginosa. European journal of clinical microbiology & infectious diseases. 2011;30(2):167-71.

Henriques A, Jenkins R, Burton N, Cooper R. The intracellular effects of manuka honey on Staphylococcus aureus. European journal of clinical microbiology & infectious diseases. 2010;29(1):45.

Roberts AE, Maddocks SE, Cooper RA. Manuka honey is bactericidal against Pseudomonas aeruginosa and results in differential expression of oprF and algD. Microbiology. 2012;158(12):3005-13.

Brudzynski K, Abubaker K, Castle A. Re-examining the role of hydrogen peroxide in bacteriostatic and bactericidal activities of honey. Frontiers in microbiology. 2011;2:213.

Mavric E, Wittmann S, Barth G, Henle T. Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand. Molecular nutrition & food research. 2008;52(4):483-9.

Jenkins R, Burton N, Cooper R. Proteomic and genomic analysis of methicillin-resistant Staphylococcus aureus (MRSA) exposed to manuka honey in vitro demonstrated down-regulation of virulence markers. Journal of Antimicrobial Chemotherapy. 2014;69(3):603-15.

Blair S, Carter D. The potential for honey in the management of wounds and infection. Australian Infection Control. 2005;10(1):24-31.

Abbas HA. Comparative antibacterial and antibiofilm activities of manuka honey and Egyptian clover honey. Asian Journal of Applied Sciences. 2014;2(2).

Wang R, Starkey M, Hazan R, Rahme L. Honey’s ability to counter bacterial infections arises from both bactericidal compounds and QS inhibition. Frontiers in microbiology. 2012;3:144.

Elbanna K, Attalla K, Elbadry M, Abdeltawab A, Gamal-Eldin H, Ramadan MF. Impact of floral sources and processing on the antimicrobial activities of different unifloral honeys. Asian Pacific Journal of Tropical Disease. 2014;4(3):194-200.

Biluca FC, Braghini F, Gonzaga LV, Costa ACO, Fett R. Physicochemical profiles, minerals and bioactive compounds of stingless bee honey (Meliponinae). Journal of Food Composition and Analysis. 2016;50:61-9.

Fatima I, AB MH, Salwani I, Lavaniya M. Physicochemical characteristics of malaysian stingless bee honey from trigona species. IIUM Medical Journal Malaysia. 2018;17(1).

Zainol MI, Yusoff KM, Yusof MYM. Antibacterial activity of selected Malaysian honey. BMC Complementary and Alternative Medicine. 2013;13(1):1-10.

Ahmed S, Othman NH. Review of the medicinal effects of tualang honey and a comparison with manuka honey. The Malaysian journal of medical sciences: MJMS. 2013;20(3):6.

Aznan MI, Khan OH, Unar AO, Sharif SET, Khan AH, Aziz SHSA, et al. Effect of Tualang honey on the anastomotic wound healing in large bowel anastomosis in rats-A randomized controlled trial. BMC complementary and alternative medicine. 2015;16(1):1-7.

Ranneh Y, Ali F, Zarei M, Akim AM, Abd Hamid H, Khazaai H. Malaysian stingless bee and Tualang honeys: A comparative characterization of total antioxidant capacity and phenolic profile using liquid chromatography-mass spectrometry. Lwt. 2018;89:1-9.

Tan HT, Rahman RA, Gan SH, Halim AS, Asma'Hassan S, Sulaiman SA, et al. The antibacterial properties of Malaysian tualang honey against wound and enteric microorganisms in comparison to manuka honey. BMC complementary and alternative medicine. 2009;9(1):34.

Al-kafaween MA, Hilmi ABM, Jaffar N, Al-Jamal HAN, Zahri MK, Jibril FI. Antibacterial and Antibiofilm activities of Malaysian Trigona honey against Pseudomonas aeruginosa ATCC 10145 and Streptococcus pyogenes ATCC 19615. Jordan Journal of Biological Sciences. 2020;13(1):69 - 76.

Wasfi R, Elkhatib WF, Khairalla AS. Effects of selected Egyptian honeys on the cellular ultrastructure and the gene expression profile of Escherichia coli. PloS one. 2016;11(3):e0150984.

Blair S, Cokcetin N, Harry E, Carter D. The unusual antibacterial activity of medical-grade Leptospermum honey: antibacterial spectrum, resistance and transcriptome analysis. European journal of clinical microbiology & infectious diseases. 2009;28(10):1199-208.

Yadata D. Detection of the electrical conductivity and acidity of honey from different areas of Tepi. Food Science and Technology. 2014;2(5):59-63.

Belay A, Solomon W, Bultossa G, Adgaba N, Melaku S. Physicochemical properties of the Harenna forest honey, Bale, Ethiopia. Food chemistry. 2013;141(4):3386-92.

Al-kafaween MA, Hilmi ABM, Al-Jamal HAN, Elsahoryi NA, Jaffar N, Zahri MK. Pseudomonas Aeruginosa and Streptococcus Pyogenes Exposed to Malaysian Trigona Honey In Vitro Demonstrated Downregulation of Virulence Factor. Iranian Journal of Biotechnology. 2020;18(4):115-23.

Mohammad Abdulraheem Al-kafaween HANA-J, Abu Bakar Mohd Hilmi , Nour Amin Elsahoryi , Norzawani Jaffar, Mohd Khairi Zahri. Antibacterial properties of selected Malaysian Tualang honey against Pseudomonas aeruginosa and Streptococcus pyogenes. Iranian Journal of microbiology. 2020;12(6):565-76.

Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnology letters. 2004;26(6):509-15.

Wu H, Wang H, Chen J, Chen G-Q. Effects of cascaded vgb promoters on poly (hydroxybutyrate)(PHB) synthesis by recombinant Escherichia coli grown micro-aerobically. Applied microbiology and biotechnology. 2014;98(24):10013-21.

Mandal MD, Mandal S. Honey: its medicinal property and antibacterial activity. Asian Pacific journal of tropical biomedicine. 2011;1(2):154-60.

Patton T, Barrett J, Brennan J, Moran N. Use of a spectrophotometric bioassay for determination of microbial sensitivity to manuka honey. Journal of Microbiological methods. 2006;64(1):84-95.

Sherlock O, Dolan A, Athman R, Power A, Gethin G, Cowman S, et al. Comparison of the antimicrobial activity of Ulmo honey from Chile and Manuka honey against methicillin-resistant Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. BMC complementary and alternative medicine. 2010;10(1):1-5.

Al Kafaween MA, Hilmi ABM, Khan RS, Bouacha M, Amonov M. Effect of Trigona honey on Escherichia coli cell culture growth: In vitro study. Journal of Apitherapy. 2019;5(2):10-7.

Boorn K, Khor YY, Sweetman E, Tan F, Heard T, Hammer K. Antimicrobial activity of honey from the stingless bee Trigona carbonaria determined by agar diffusion, agar dilution, broth microdilution and timeâ€kill methodology. Journal of applied microbiology. 2010;108(5):1534-43.

Zulkhairi Amin FA, Sabri S, Mohammad SM, Ismail M, Chan KW, Ismail N, et al. Therapeutic properties of stingless bee honey in comparison with european bee honey. Advances in Pharmacological and Pharmaceutical Sciences. 2018;2018.

Fuad A, Anwar N, Zakaria A, Shahidan N, Zakaria Z. Physicochemical characteristics of Malaysian honeys influenced by storage time and temperature. Journal of Fundamental and Applied Sciences. 2017;9(2S):841-51.

Badawy O, Shafii S, Tharwat E, Kamal A. Antibacterial activity of bee honey and its therapeutic usefulness against Escherichia coli O157: H7 and Salmonella typhimurium infection. Revue scientifique et technique (International Office of Epizootics). 2004;23(3):1011.

Irish J, Blair S, Carter DA. The antibacterial activity of honey derived from Australian flora. PloS one. 2011;6(3):e18229.

Anklam E. A review of the analytical methods to determine the geographical and botanical origin of honey. Food chemistry. 1998;63(4):549-62.

Uhlich GA, Gunther NW, Bayles DO, Mosier DA. The CsgA and Lpp proteins of an Escherichia coli O157: H7 strain affect HEp-2 cell invasion, motility, and biofilm formation. Infection and immunity. 2009;77(4):1543-52.

Weber MM, French CL, Barnes MB, Siegele DA, McLean RJ. A previously uncharacterized gene, yjfO (bsmA), influences Escherichia coli biofilm formation and stress response. Microbiology. 2010;156(Pt 1):139.

Zhang X-S, García-Contreras R, Wood TK. YcfR (BhsA) influences Escherichia coli biofilm formation through stress response and surface hydrophobicity. Journal of bacteriology. 2007;189(8):3051-62.

Anthimidou E. actividad Mossialos D. antibacteriana de mieles griegas y chipriotas contra Staphylococcus aureus y Pseudomonas aeruginosa, en comparación con la miel de manuka. J Med Food. 2013;16(1):42-7.

Lee J-H, Park J-H, Kim J-A, Neupane GP, Cho MH, Lee C-S, et al. Low concentrations of honey reduce biofilm formation, quorum sensing, and virulence in Escherichia coli O157: H7. Biofouling. 2011;27(10):1095-104.

Dong T, Schellhorn HE. Global effect of RpoS on gene expression in pathogenic Escherichia coli O157: H7 strain EDL933. BMC genomics. 2009;10(1):349.

Nishino K, Yamaguchi A. EvgA of the two-component signal transduction system modulates production of the yhiUV multidrug transporter in Escherichia coli. Journal of bacteriology. 2002;184(8):2319-23.

White-Ziegler CA, Davis TR. Genome-wide identification of H-NS-controlled, temperature-regulated genes in Escherichia coli K-12. Journal of bacteriology. 2009;191(3):1106-10.

Ejrnæs K. Bacterial characteristics of importance for recurrent urinary tract infections caused by Escherichia coli. Dan Med Bull. 2011;58(4):B4187.

Ostrowska K, Strzelczyk A, Różalski A, Stączek P. Bacterial biofilm as a cause of urinary tract infection--pathogens, methods of prevention and eradication. Postepy higieny i medycyny doswiadczalnej (Online). 2013;67:1027-33.

Barrios AFG, Zuo R, Hashimoto Y, Yang L, Bentley WE, Wood TK. Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). Journal of bacteriology. 2006;188(1):305-16.

Johnson DW, van Eps C, Mudge DW, Wiggins KJ, Armstrong K, Hawley CM, et al. Randomized, controlled trial of topical exit-site application of honey (Medihoney) versus mupirocin for the prevention of catheter-associated infections in hemodialysis patients. Journal of the American Society of Nephrology. 2005;16(5):1456-62.

Quadri K, Tanimu D, Iqbal A. A prospective randomised controlled trial of topical honey versus povidone iodine in the prevention of haemodialysis catheter related sepsis. J Am Soc Nephrol. 1998;9:180A-1A.

Dowd SE, Sun Y, Secor PR, Rhoads DD, Wolcott BM, James GA, et al. Survey of bacterial diversity in chronic wounds using pyrosequencing, DGGE, and full ribosome shotgun sequencing. BMC microbiology. 2008;8(1):43.

Wu EQ, Mulani P, Farrell MH, Sleep D. Mapping FACTâ€P and EORTC QLQâ€C30 to patient health status measured by EQâ€5D in metastatic hormoneâ€refractory prostate cancer patients. Value in Health. 2007;10(5):408-14.

Cooper R, Molan P, Krishnamoorthy L, Harding K. Manuka honey used to heal a recalcitrant surgical wound. European Journal of Clinical Microbiology and Infectious Diseases. 2001;20(10):758.

Tan MK, Hasan Adli DS, Tumiran MA, Abdulla MA, Yusoff KM. The efficacy of Gelam honey dressing towards excisional wound healing. Evidence-Based Complementary and Alternative Medicine. 2012;2012.

Andreu V, Mendoza G, Arruebo M, Irusta S. Smart dressings based on nanostructured fibers containing natural origin antimicrobial, anti-inflammatory, and regenerative compounds. Materials. 2015;8(8):5154-93.

Tasleem S, Naqvi SBS, Khan SA, Hashmi K. Efficacy of newly formulated ointment containing 20% active antimicrobial honey in treatment of burn wound infections. Journal of Ayub Medical College Abbottabad. 2013;25(1-2):145-8.

Tasleem S, Naqvi SBS, Khan SA, Hashimi K. ‘Honey ointment’: a natural remedy of skin wound infections. Journal of Ayub Medical College Abbottabad. 2011;23(2):26-31.

Iftikhar F, Arshad M, Rasheed F, Amraiz D, Anwar P, Gulfraz M. Effects of acacia honey on wound healing in various rat models. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives. 2010;24(4):583-6.

Downloads

Published

2021-03-28

Issue

Section

Articles