Evaluation of Structurally Related 3-Substituted 4-Amino-2-arylquinolines and 2-Aryl-4-methoxyquinolines for Potential Antimycobacterial Activity


  • Antoinette Labuschagné University of South Africa
  • Namrita Lall Department of Plant Science, University of Pretoria, Pretoria, South Africa
  • Malose J. Mphahlele Department of Plant Science, University of Pretoria, Pretoria, South Africa


antimycobacterial activity, Mycobacterium tuberculosis, immunomodulation, 2-aryl-4-methoxyquinolines, 4-amino-2-arylquinolines


Series of structurally related 2-aryl-4-(amino/methoxy)quinoline derivatives were evaluated for potential antimycobacterial activity against Mycobacterium tuberculosis strain H37Rv. A complete inhibition of a drug sensitive strain of M. tuberculosis was observed at 20.0 µg/ml for 4-amino-2-(4-chlorophenyl)quinoline 3b, 4-amino-3-iodo-2-(4-methoxyphenyl)quinoline 5d, 4-amino-2,3-diphenylquinoline 6a, 4-amino-2-(4-fluorophenyl)-3-phenylquinoline 6b and 4-amino-2-(4-methoxyphenyl)-3-phenylquinoline 6d. These derivatives were further evaluated for activity against a multidrug resistant strain of M. tuberculosis. The minimum inhibitory concentration (MIC) against a two drug-resistant strain was found to be ≥5.0≤20.0 µg/ml. Systems 6a and 6b were, in turn, subjected to cytotoxicity assay using U937 human macrophages and their intracellular antimycobacterial activity was also determined. Moreover, these two 4-amino-2,3-diarylquinoline derivatives were also investigated for their immune modulatory effect according to Th1 and Th2-subset cytokines.

Author Biographies

Antoinette Labuschagné, University of South Africa

Chemistry and professor

Namrita Lall, Department of Plant Science, University of Pretoria, Pretoria, South Africa

Plant Science, Student

Malose J. Mphahlele, Department of Plant Science, University of Pretoria, Pretoria, South Africa

Plant Science and Associate Professor


WHO Report 2010: Global tuberculosis control. Geneva, World Health Organisation. Available at http://www.who.int/tb/publications/global_report/2010/en/index.html [Accessed 2010.11.12]

Lin, Y.; Zhou, Y.; Flavin, M.T.; Zhou, L.M.; Nie, W.; Chen, F.C. Chalcones and flavanoids as anti-tuberculosis agents. Bioorg. Med. Chem. 2002, 10, 2795–2802.

Houston, S.; Fanning, A. Current and potential treatment of tuberculosis. Drugs 1994, 48, 689–708.

Newton, S.M.; Lau C.; Wright, C.W. A Review of Antimycobacterial Natural Products. Phytother. Res. 2000, 14, 303–332.

Onyebujoh, P.; Zumla, A.; Ribeiro, I. Treatment of tuberculosis: present status and future prospects. Bulletin of the World Health Organisation 2005, 83, 857–865.

Quenelle, D.C.; Winchester, G.A.; Staas, J.K. Treatment of tuberculosis using a combination of sustained-release rifampin-loaded microspheres and oral dosing with isoniazid. Antimicrob. Agents Chemother. 2001, 45, 1637–1644.

Mital, A.; Negi, V.S.; Ramachandran, U. Synthesis and antibacterial activities of certain trifluoromethyl-aminoquinoline derivatives. Arkivoc 2006, 220–227.

Alguinaldo, A.M.; Dalangin-Mallari, V.M.; Macabeo, A.P.G.; Byrne, L.T.; Abe, F.; Yamauchi, T.; Franzblau, S.G. Quinoline alkaloids from Lunasia amara inhibit Mycobacterium tuberculosis H37Rv in vitro. Int. J. Antimicrob. Agents 2007, 29, 738–746.

Hadjeri, M.; Mariotte, A.; Boumendjel, A. Alkylation of 2-phenyl-4-quinolines: synthetic and structural studies. Chem. Pharm. Bull. 2001, 49, 1352–1355.

Moyer, M.P.; Weber, F.H.; Gross, J.L. Structure-activity relationships of imidazo[4,5-f]quinoline partial structures and analogs. Discovery of pyrazolo[3,4-f]quinoline derivatives as potent immunistimulants. J. Med. Chem. 1992, 35, 4595–4601.

Kireev, D.B.; Hhretien, J.R.; Raevsky, D.A. Molecular modelling and quantitative structure-activity studies of antiHIV-1,2-heteroarylquinoline-4-amines. Eur. J. Med. Chem. 1995, 30, 395–402.

Antas, P.R.Z.; Ding, L.; Hackman, J.; Reeves-Hammock, L.; Shintani, A.K.; Schiffer, J.; Holland, S.M.; Sterling, T.R. Decreased CD4+ lymphocytes and innate immune responses in adults with previous extrapulmonary tuberculosis. J. Allergy Clin. Immunol. 2006, 117, 916–923.

Young, L.S. Mycobacterial diseases and the compromised host. Clin. Infect. Dis. 1993, 17, 436–441.

Bouic, J.D. Sterols and sterolins: new drugs for the immune system? Drug Disc. Today 2002, 7, 775–778.

Breytenbach, U.; Clark, A.; Lamprecht, J.; Bouic, P. Flow cytometric analysis of the Th1-Th2 Balance in healthy individuals and patients infected with the human immunodeficiency virus (HIV) receiving a plant sterol/sterolin mixture. Cell Biol. Int. 2001, 25, 43–49.

Kit, S. 2008. "Vaccination", in AccessScience@McGraw-Hill, http://www.accessscience.com, DOI 10.1036/1097-8542.725200 [Accessed 2008.09.13].

Romagnani, S. Lymphokine production by human T cells in disease states. Annu. Rev. Immunol. 1994, 12, 227–257.

Harris, J.; De Haro, S.A.; Master, S.S.; Keane, J.; Roberts, E.A.; Delgado, M.; Deretic, V. T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity 2007, 27, 505–517.

Grange, J.M. Immunotherapy: a new strategy for tuberculosis control? Respir. Med. 1997, 91, 1–4.

Mphahlele MJ.; Mtshemla V. 2-Aryl-4-chloro-3-iodoquinolines as substrates for the synthesis of 2,3-diaryl-4-methoxyquinolines via palladium–catalyzed Suzuki–Miyaura cross–coupling with phenylboronic acid. J. Chem. Res. 2008, 437–440.

Mphahlele M.J.; Gheevargheese O.; Makhubela N.F.H. Unprecedented outcome of base-promoted Neber rearrangement of O-mesyloxime derivatives of 2-aryl-1,2,3,4-tetrahydro-1-methylsulfonyl-4-quinolone- synthesis of 4-amino-2-arylquinolines. Phosphor. Sulfur Silicon 2000, 166, 303–314.

Mphahlele M.J.; Mtshemla V. Synthesis of primary 4-amino-2-aryl-3-halogenoquinoline derivatives via Staudinger reaction of 2-aryl-4-azido-3-(bromo/iodo)quinolines with triphenyl phosphine. J. Heterocycl Chem. 2008, 45, 1343–1350.

Lall, N.; Meyer, J.J.M. Inhibition of drug-sensitive and drug-resistant strains of Mycobacterium tuberculosis by diospyrin, isolated from Euclea natalensis. J. Ethnopharmacol. 2001, 78, 213–216.

Bapela NB.; Lall N.; Fourie PB.; Franzblau SG.; Van Rensburg CEJ. Activity of 7-methyljuglone in combination with antituberculous drugs against Mycobacterium tuberculosis. Phytomedicine 2006, 13, 630–635.

Mativandlela, S.P.N.; Meyer, J.J.M.; Hussein, A.A.; Lall, N. Antitubercular activity of isolated compounds from Pelargonium sidoides. Pharm. Biol. 2007, 45, 645–650.

Middlebrook, G.; Reggiards, Z.; Tigertt, W.D. Automable radiometric detection of growth of Mycobacterium tuberculosis in selective media. Am. Rev. Respir. Dis. 1977, 115, 1067–1069.

Passmore, J.S.; Lukey, P.T.; Ress, S.R. The human macrophage cell line U937 as an in vitro model for selective evaluation of mycobacterial antigen-specific cytotoxic T-cell function. Immunology 2001, 102, 146–156.

Hosoya, H.; Marunouchi, T. Differentiation and dedifferentiation of the Human Monocytic Leukemia cell line, U937. Cell Struct. Funct. 1992, 17, 263–269.

Mahapatra, A.; Mativandlela, S.P.N.; Binneman, B.; Fourie, P.B.; Hamilton, C.J., Meyer, J.J.M.; van der Kooy, F.; Houghton, P.; Lall, N. Activity of 7-methyljuglone derivatives against Mycobacterium tuberculosis and as subversive substrates for mycothiol disulfide reductase. Bioorg. Med. Chem. 2007, 15, 7638–7646.

Rastogi, N.; Labrousse, V.; Goh, K.S. In vitro activities of fourteen antimicrobial agents against drug-susceptible and resistant clinical isolates of Mycobacterium tuberculosis and comparable intracellular activities against the virulent H37Rv strain in human macrophages. Curr. Microbiol. 1996, 33, 167–75.

Lall, N.; Meyer, J.J.M.; Wang, Y.; Bapela, N.B.; van Rensburg, C.E.J.; Fourie, B.; Franzblau, S.G. Characterization of Intracellular Activity of Antitubercular Constituents from the Roots of Euclea natalensis. Pharmaceut. Biol. 2005, 43, 353–357.

Rastogi, N.; Labrousse, V.; Goh, K.S.; De Sousa, J.P. Antimycobacterial spectrum of sparfloxacin and its activities alone and in association with other drugs against Myocabacterium avium complex growing extracellularly and intracellularly in marine and human macrophages. Antimicrob. Agents Chemother. 1991, 35, 2473–2480.

Cook, E.B.; Stahl, J.L.; Lowe, L.; Chen, R.; Morgan, E.; Wilson, J.; Varro, R.; Chan, A.; Graziano F.M.; Barney, N.P. Simultaneous measurement of six cytokines in a single sample of human tears using microparticle-based flow cytometry: allergics vs. non-allergics. J. Immunol. Methods 2001, 254, 109–118.

Jiménez, R.; Ramírez, R.; Carracedo, J.; Agüera, M.; Navarro, D.; Santamaría, R.; Pérez, R.; Castillo, D.D.; Aljama, P. Cytometric bead array (CBA) for the measurement of cytokines in urine and plasma of patients undergoing renal rejection. Cytokine 2005, 32, 45–50.

Youmans, A.S.; Youmans, G.P. The effect of “Tween-80†in vitro on the bacteriostatic activity of twenty compounds for Mycobacterium tuberculosis. J. Bacteriol. 1948, 56, 245–252.

Lall, N.; Meyer, J.J.M. In vitro inhibition of drug resistant and drug sensitive strains of Mycobacterium tuberculosis by ethnobotanically selected South African plants. J. Ethnopharmacol. 1999, 66, 347–354.

Mativandlela, S.P.N.; Lall, N.; Meyer, J.J.M. Antibacterial, antifungal and antitubercular activity of (the roots of) Pelargonium reniforme (CURT) and Pelargonium sidoides (DC) (Geraniaceae) root extracts. S. Afr. J. Bot. 2005, 72, 232–237.

Strekowski L., Gulevich Y., Baranowski T.C.; Parker, A.N.; Kiselyov, A.D.; Lin, S.-Y.; Tanious, F.A.; Wilson, W.D. Synthesis and structure-DNA binding relationship analysis of DNA triple-helix specific intercalators. J. Med. Chem. 1996, 39, 3980–3983.

Pinard, E.; Alanine, A.; Bourson, A.; Büttelmann, B.; Heitz, M.-P.; Mutel, V.; Gill, R.; Trube, G.; Wyler, R. 4-Aminoquinolines as novel class of NR1/2B subtype selective NMDA receptor antagonists. Biorg. Med. Chem. Lett. 2002, 12, 2615–2619.

Dorman, S.E.; Holland, S.M. Interferon-γ and interleukin-12 pathway defects and human disease. Cytokine Growth Factor Rev 2000; 11:321-333.

Kannanganat, S.; Ibegbu, C.; Chennareddi, L.; Robinson, H.L.; Amara, R.R. Multiple-cytokine-producing antiviral CD4 T cells are functionally superior to single-cytokine-producing cells. J. Virol. 2007, 81, 8468–8476.

Bermudez, L.E.; Inderlied, C.; Young, L.S. Stimulation with cytokines enhances penetration of azithromycin into human macrophages. Antimicrob. Agents Chemother. 1991, 35, 2625–2629.

Holland, S.M. Therapy of mycobacterial infections. Res. Immunol. 1996, 147, 572–581.

Ghadimi, D.; de Vrese, M.; Heller, K.J.; Schrezenmeir, J. Lactic acid bacteria enhance autophagic ability of mononuclear phagocytes by increasing Th1 autophagy-promoting cytokine (IFN-γ) and nitric oxide (NO) levels and reducing Th2 autophagy-restraining cytokines (IL-4 and IL-13) in response to Mycobacterium tuberculosis antigen. Int. Immunopharmac. 2010, 10, 694–706.

Patel, M.P.; Blanchard, J.S. Expression, purification, and characterization of Mycobacterium tuberculosis mycothione reductase. Biochemistry 1999, 38, 11827–11833.