Antimicrobial Resistance and Biofilm Formation of Pseudomonas aeruginosa

A short review article

Authors

  • Abdelraouf A Elmanama Islamic University-Gaza
  • Suhaila Al-Sheboul Jordan University of Science and Technology Faculty of Applied Medical Sciences Department of Medical Laboratory Sciences
  • Renad I Abu-Dan Islamic University of Gaza Faculty of Health Sciences Medical laboratory Sciences Department

DOI:

https://doi.org/10.3823/846

Keywords:

bacterial adhesion, Biofilm, Pseudomonas aeruginosa, antimicrobial resistance, quorum sensing

Abstract

Pseudomonas aeruginosa threatens patient’s care. It is considered as the most complicated health care associated pathogen to be eliminated from infection site. The biofilm forming ability of P. aeruginosa, being a major virulence factor for most pathogenic microorganism, protects it from host immunity and contribute to antibiotic resistance of this organism. It is estimated that about 80% of infectious diseases are due to biofilm mode of growth. Biofilm forming ability of bacteria imparts antimicrobial resistance that leads to many persistent and chronic bacterial infections. The world is becoming increasingly under the threat of entering the “post-antibiotic eraâ€, an era in which the rate of death from bacterial infections is higher than from cancer.

This review focus on P. aeruginosa biofilm forming ability; definition, developmental stages, and significance. In addition, the quorum sensing and the antibiotic resistance of this pathogen is discussed.

Keywords: Biofilm; bacterial adhesion; Pseudomonas aeruginosa; antimicrobial resistance; quorum sensing.

 

References

Bhatia R, Ichhpujani R. Essentials of Medical Microbiology. Jaypee Brothers 1994; 405- 409.

Zhanel G, DeCorby M, Heather A, et al. Prevalence of antimicrobial-resistant pathogens in Canadian hospitals: results of the Canadian Ward Surveillance Study (CANWARD 2008). Antimicrob Agents Chemother 2010; 54(11), 4684-4693.

Kadurugamuwa J, Beveridge T. Natural release of virulence factors in membrane vesicles by Pseudomonas aeruginosa and the effect of aminoglycoside antibiotics on their release. J Antimicrob Chemother 1997; 40(5), 615-621.

Ballok A, O'Toole G. Pouring salt on a wound: Pseudomonas aeruginosa virulence factors alter Na+ and Cl− flux in the lung. J Bacteriol 2013; 195(18), 4013-4019.

Willcox M. Pseudomonas aeruginosa infection and inflammation during contact lens wear: a review. Optometry Vision Sci 2007; 84(4), 273-278.

Høiby N, Ciofu O, Bjarnsholt T, et al. Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol 2010; 5(11), 1663-1674.

Sagel S, Gibson R, Emerson J, et al. Impact of Pseudomonas and Staphylococcus infection on inflammation and clinical status in young children with cystic fibrosis. J Pediatr 2009; 154(2),183-188.

Hotterbeekx A, Kumar-Singh S, Goossens H, et al. In Vivo and In Vitro Interactions between Pseudomonas aeruginosa and Staphylococcus spp. Front Cell Infect Microbiol 2017; 7(106).

Becker M, Paster B, Leys E, et al. Molecular analysis of bacterial species associated with childhood caries. J Clin Microbiol 2002; 40(3), 1001-1009.â€

Hauser A. The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev Microbiol 2009; 7(9), 654-665.

Strateva T and Mitov I. Contribution of an arsenal of virulence factors to pathogenesis of Pseudomonas aeruginosa infections. Ann Microbiol 2011; 61(4), 717-732.

Czechowska K, McKeithen-Mead S, Al Moussawi K, et al. Cheating by type 3 secretion system-negative Pseudomonas aeruginosa during pulmonary infection. Proc Natl Acad Sci 2014; 111(21), 7801-7806.

Jackson D, Lowbury E, Elizabeth T, et al. Pseudomonas pvocyanea in Burns. Its Role as a Pathogen, and the Value of Local Polymyxin Therapy. Lancet 1951; 137-147.

Ghaima K, Abdulhassan A, Mahdi Z, et al. Molecular study of extended-spectrum beta-lactamase (ESBL) genes in Pseudomonas aeruginosa isolate from burns. Biochem Cell Arch 2018; 18, 721-727.

McManus A , Mason A, William F, et al. A decade of reduced Gram-negative infections and mortality associated with improved isolation of burned patients. Arch Surg 1994; 129(12), 1306-1309.

Hsueh P, Teng L, Yang P, et al. Persistence of a Multidrug-Resistant Pseudomonas aeruginosa Clone in an Intensive Care Burn Unit. J Clin Microbiol 1998; 36(5), 1347-1351.

Costerton J, Montanaro L, Arciola C, et al. Biofilm in implant infections: its production and regulation. Int J Artif Organs 2005; 28(11), 1062-1068.

O'Toole G, Kaplan H, Kolter R, et al. Biofilm formation as microbial development. Annu Rev in Microbiol 2000; 54(1), 49-79.

Kuchma S,O'Toole G. Surface-induced and biofilm-induced changes in gene expression. Curr Opin Biotechnol 2000; 11(5), 429-433.

Jain K, Parida S, Mangwani N , et al. Isolation and characterization of biofilm-forming bacteria and associated extracellular polymeric substances from oral cavity. Ann Microbiol 2013; 63(4), 1553-1562.

Allison D . The biofilm matrix. Biofouling 2003; 19(2), 139-150.

Fong J, Yildiz F. Biofilm matrix proteins. Microbial Biofilms 2015; 201-222.

Branda S, Chu F, Kearns D, et al. A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol 2006; 59(4), 1229-1238.

Kavanaugh J, Flack C, Lister J, et al. Identification of extracellular DNA-binding proteins in the biofilm matrix. MBio 2019; 10(3): e01137-01119.

Ma L, Conover M, Lu H, et al. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog 2009; 5(3).

da Silva D, Matwichuk M, Townsend D, et al. The Pseudomonas aeruginosa lectin LecB binds to the exopolysaccharide Psl and stabilizes the biofilm matrix. Nat Commun 2019; 10(1), 1-11.

Hall-Stoodley L, Costerton J, Stoodley P, et al. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2004; 2(2), 95.

Vogeleer P, Tremblay Y, Mafu A, et al. Life on the outside: role of biofilms in environmental persistence of Shiga-toxin producing Escherichia coli. Front Microbiol 2014; 5, 317.

Chen C, Hofmann C, Cottrell B ,et al. Phenotypic and genotypic characterization of biofilm forming capabilities in non-O157 Shiga toxin-producing Escherichia coli strains. PLoS One 2013; 8(12).

Farfan M and Torres A. Molecular mechanisms that mediate colonization of Shiga toxin-producing Escherichia coli strains. Infect Immun 2012; 80 (3), 903-913.

Beloin C, Roux A, Ghigo M, et al. Escherichia coli biofilms. Bacterial Biofilms, Springer 2008; 249-289.

Boyd A, Chakrabarty A. Role of alginate lyase in cell detachment of Pseudomonas aeruginosa. Appl Environ Microbiol 1994;60(7), 2355-2359.

Allison D, Ruiz B, SanJose C, et al. Extracellular products as mediators of the formation and detachment of Pseudomonas fluorescens biofilms. FEMS Microbiol Lett 1998; 167(2), 179-184.

Seneviratne C, Jin L, Samaranayake L, et al. Biofilm lifestyle of Candida: a mini review. Oral Dis 2008; 14(7), 582-590.

Flemming H, Wingender J,Griegbe T, et al. Physico-chemical properties of biofilms. Biofilms: recent advances in their study and control. Amsterdam: Harwood Academic Publishers, 2000,19-34.

Davies J, Stern M , Dewar A, et al. CFTR gene transfer reduces the binding of Pseudomonas aeruginosa to cystic fibrosis respiratory epithelium. Am. J. Respir. Cell

Mol Biol 1997; 16(6), 657-663.

Mah T. Biofilm-specific antibiotic resistance. Future Microbiol 2012; 7(9), 1061-1072.

Santos-Lopez A, Marshall C, Scribner M, et al. Evolutionary pathways to antibiotic resistance are dependent upon environmental structure and bacterial lifestyle. Elife 2019; 8, e47612.â€

Gurung J, Khyriem A, Banik A, et al. Association of biofilm production with multidrug resistance among clinical isolates of Acinetobacter baumannii and Pseudomonas aeruginosa from intensive care unit. Indian J Crit Care Med 2013;17(4), 214.

Breidenstein E, Fuente-Núñez C, Hancock R, et al. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol 2011; 19(8), 419-426.

Høiby N, Bjarnsholt T, Givskov M, et al. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 2010; 35(4), 322-332.

Haddadin R, Saleh S, Mahmoud R, et al. Multiple drug resistance and strength of attachment to surfaces in Pseudomonas aeruginosa isolates. Lett Appl Microbiol 2010; 51(1), 48-53.â€

Gurung J, Khyriem A, Banik A, et al. Association of biofilm production with multidrug resistance among clinical isolates of Acinetobacter baumannii and Pseudomonas aeruginosa from intensive care unit. Indian J Crit Care Med 2013; 17(4), 214.â€

Redfern J. Wallace J. van Belkum A et al. Biofilm Associated Genotypes of Multidrug-Resistant Pseudomonas aeruginosa. Enright bioRxiv 713453; doi: https://doi.org/10.1101/713453.

Gottrup F. A specialized wound-healing center concept: importance of a multidisciplinary department structure and surgical treatment facilities in the treatment of chronic wounds. The Am J Surg 2004; 187(5), S38-S43.

Elmanama A, Al Laham N, Tayh G et al. Antimicrobial susceptibility of bacterial isolates from burn units in Gaza. Burns 2013; 39(8), 1612-1618.

Davis S , Ricotti C, Cazzaniga A, et al. Microscopic and physiologic evidence for biofilm associated wound colonization In Vivo. Wound repair Regen 2008;16(1), 23-29.

Bjarnsholt T, Jensen P, Burmølle M, et al. Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiol 2005; 151(2): 373-383.

Edwards, R. and Harding K. Bacteria and wound healing. Curr Opin Infect Dis 2004; 17(2): 91-96.

Klausen M, Heydorn A, Ragas P, et al. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 2003; 48(6), 1511-1524.

Fazli M, Bjarnsholt T, Møller K, et al. Nonrandom distribution of Pseudomonas aeruginosa and Staphylococcus aureus in chronic wounds.

J Clin Microbiol 2009; 47(12), 4084-4089.

Phillips M, Stewart S, Anderson J, et al. Neuropathological findings in Miller Fisher syndrome. J Neurol Psychiatry 1984; 47(5), 492-495.

Jayaraman A, Wood T. Bacterial Quorum Sensing: Signals, Circuits, and Implications for Biofilms and Disease. Annu Rev Biomed Eng 2008; 10, 145-167.

Verbeke F, De Craemer S, Debunne N, et al. Peptides as quorum sensing molecules: measurement techniques and obtained levels In Vitro and In Vivo. Front Neurosci 2017 ; 11, 183.

Miller M, Bassler B. Quorum sensing in bacteria. Annu Rev Microbiol 2001; 55(1), 165-199.

Waters C and Bassler B. Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev. Biol 2005; 21, 319-346.

Claverys J, Prudhomme M, Martin B, et al. Induction of competence regulons as a general response to stress in Gram-positive bacteria. Annu Rev Microbiol 2006; 60, 451-475.

Parsek M, Val D, Hanzelka B, et al. Acyl homoserine-lactone quorum-sensing signal generation. Proc Natl Acad Sci 1999; 96(8), 4360-4365.

Von Bodman S, Willey J, Diggle S, et al. Cell-cell communication in bacteria: united we stand. J Bacteriol 2008; 190(13), 4377-4391.

Fleuchot B, Gitton C, Guillot A, et al. Rgg proteins associated with internalized small hydrophobic peptides: a new quorumâ€sensing mechanism in Streptococci. Mol Microbiol 2011; 80(4), 1102-1119.

Schauder S. and Bassler B. The languages of bacteria. Genes Dev 2001; 15(12), 1468-1480.

Fuqua W, Winans S, Greenberg E, et al. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators.

J Bacteriol 1994; 176(2): 269.

Chugani S, Whiteley M, Lee K ,et al. QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc Natl Acad Sci 2001;98(5), 2752-2757.

Ahn B , Cha J, Lee E, et al. Nur, a nickelâ€responsive regulator of the Fur family, regulates superoxide dismutases and nickel transport in Streptomyces coelicolor. Mol Microbiol 2006 ; 59(6), 1848-1858.

Lequette Y, Lee H, Ledgham F, et al. A distinct QscR regulon in the Pseudomonas aeruginosa quorum-sensing circuit. J Bacteriol 2006; 188(9), 3365-3370.

Asfahl K. and Schuster M. Additive effects of quorum sensing anti-activators on Pseudomonas aeruginosa virulence traits and transcriptome. Front Microbiol 2018; 8, 2654.

Ledgham F, Ventre I, Soscia C, et al. Interactions of the quorum sensing regulator QscR: interaction with itself and the other regulators of Pseudomonas aeruginosa LasR and RhlR. Mol Microbiol 2003; 48(1),199-210.

Moradali M, Ghods S, Rehm B, et al. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol 2017; 7, 39.

Ding F, Oinuma K, Smalley N, et al. The Pseudomonas aeruginosa orphan quorum sensing signal receptor qscR regulates global quorum sensing gene expression by activating a single linked operon. mBio 2018; 9(4), e01274-01218.

Möker N, Dean C, and Tao J. Pseudomonas aeruginosa increases formation of multidrug-tolerant persister cells in response to quorum-sensing signaling molecules. J Bacteriol 2010;192, 1946–1955.

Davies J, and Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 2010 ;74, 417–433.

Hazan R, Que Y, Maura A, et al. Auto poisoning of the respiratory chain by a quorum-sensing-regulated molecule favors biofilm formation and antibiotic tolerance. Curr Biol 2016; 26, 195–206.

Bagge N, Schuster M, Hentzer M, et al. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production. Antimicrob Agents Chemother 2004; 48, 1175–1187.

Doernberg S, Chambers H . Antimicrobial stewardship approaches in the intensive care unit. Infect Dis Clin North Am 2017; 31(3), 513-534.

Gupta A, Mumtaz S, Hussain I, et al. Combatting antibiotic-resistant bacteria using nanomaterials. Chem Soc Rev 2019;48(2), 415-427.

B Li, Webster T. Bacteria antibiotic resistance: New challenges and opportunities for implantâ€associated orthopedic infections. J Orthop Res 2018; 36(1), 22-32.

Costerton J, Stewart J, Greenberg E, et al. Bacterial biofilms: a common cause of persistent infections. Science 1999; 284(5418): 1318-1322.

Mendez-Vilas A. Microbes in Applied Research: Current Advantages and Challenges. World Scientific, 2012.

Van Acker H, Van Dijck P, Coenye T, et al. Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms. Trends Microbiol 2014; 22(6), 326-333.

Stewart P, Costerton J. Antibiotic resistance of bacteria in biofilms. The lancet 2001;358(9276), 135-138.

Mittal V. Biofilm and Antimicrobial Resistance. Biofilms in Human Diseases: Treatment and Control, Springer 2019; 285-298.

Bjarnsholt T, Alhede M, Alhede M, et al. The In Vivo biofilm. Trends Microbiol 2013 ; 21(9), 466-474.

Downloads

Published

2020-07-29

Issue

Section

Articles