Pseudomonas aeruginosa a common opportunistic pathogen in Jordan: A review article.

Pseudomonas aeruginosa

Authors

  • Asem A. Shehabi The University of Jordan, Amman
  • Aya M. Kamal

DOI:

https://doi.org/10.3823/827

Keywords:

Pseudomonas aeruginosa, opportunistic pathogen, clinical 7 environmental samples, Jordan

Abstract

Pseudomonas aeruginosa is widely present in many diverse environments. It can be found in various living sources, including water, plants, intestinal tract of human and animals, and most importantly hospital environment. The organism is an important cause of nosocomial infections, such as septicemia and pneumonia, life-threatening infections in immunocompromised persons, and chronic infections in cystic fibrosis patients. Recent studies reported that hospitalized patients infected with multidrug resistance (MDR) P. aeruginosa have increased hospital length of stay and mortality. This short review focus on the current common occurrence and antimicrobial susceptibility pattern of P. aeruginosa in Jordan.

References

Weiser R, Donoghue, D, Weightman A, and Mahenthiralingam E. Evaluation of five selective media for the detection of Pseudomonas aeruginosa using a strain panel from clinical, environmental and industrial sources. J Microbiol Methods 2014; 99, 8-14.

Zichichi L, Asta G, and Noto G. Pseudomonas aeruginosa folliculitis after shower/bath exposure. Int J Dermatol 2000; 39: 270–273.

Grosso-Becerra MV, Santos-Medellín C, Gonzalez-Valdez A, M endez JL, Delgado G et al. Pseudomonas aeruginosa clinical and environmental isolates constitute a single population with high phenotypic diversity. BMC Genomics 2014;15:318.

Ruiz L, Domínguez MA, Ruiz N, Viñas M. Relationship between clinical and environmental isolates of Pseudomonas aeruginosa in a hospital setting. Arch Med Res 2004;35:251–257.

Shehabi AA, Masoud H, Balkam Maslamani FA. Common Antimicrobial Resistance Pattern, Biotypes and Serotypes Found among Pseudomonas aeruginosa Isolates from Patient’s Stools and Drinking Water Sources in Jordan. J Chemother 2005;17 (2): 179-183.

Alonso A, Campanario E, Martinez J L. Emergence of multidrug-resistant mutants is increased under antibiotic selective pressure in Pseudomonas aeruginosa. Microbiology 145, 2857-2862.

McDonnel G, Russel D. Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 1999;12: 147-149.

Machado I, Graça J, Lopes H, Lopes S, Pereira MO. antimicrobial

Pressure of ciprofloxacin and Gentamicin on biofilm development by

an endoscope-Isolated Pseudomonas aeruginosa. ISRN Biotechnol

;10.

Russell AD. Bacterial resistance to disinfectants: present knowledge and future problems. J Hosp infect 1999;43:57-68.

Shaver CM, Hauser AR. Relative contributions of Pseudomonas aeruginosa ExoU, ExoS, and ExoT to virulence in the lung. Infect Immun 2004;72:6969–6977.

Driscoll JA ,Brody SL, Kollef MH The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs 2007; 67, 351-368.

Al Dawodeyah HY, Nathir Obeidat N , Abu-Qatouseh LF, Shehabi A A. Antimicrobial resistance and putative virulence genes of Pseudomonas aeruginosa isolates from patients with respiratory tract infection . Germs 2018; 8(1): 31–40.

Alhazmi A. Pseudomonas aeruginosa– Pathogenesis and Pathogenic Mechanisms. Int J Biol 2015;7: 2.

Willcox MDP, Zhu H, Conibear TCR, Hume EH, Givskov M, et al. Role of quorum sensing by Pseudomonas aeruginosa in microbial keratitis and cystic fibrosis. Microbiology 2008;154:2184–2194.

Burcu S, Burak A, Ayşegül KY. Biofilm production and biocidal efficacy in multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii isolates. Int J Antisep Disinfect Steril 2016;1(1):7-12.

Azghani AO, Miller E.J., Peterson, BT. Virulence factors from Pseudomonas aeruginosa increase lung epithelial permeability. Lung 2000; 178(5):261-9.

Hassett DJ, Korfhagen TR, Irvin RT, Schurr MJ, Sauer K, et al. Pseudomonas aeruginosa biofilm infections in cystic fibrosis: insights into pathogenic processes and treatment strategies. Expert Opin Ther Targets 2010, 14: 117-130.

Cotar AI., Chifiriuc MC, Banu O, Lazar V. Molecular characterization of virulence patterns in Pseudomonas aeruginosa strains isolated from respiratory and wound samples. Biointerface Res Appl Chem 2013; 3:551-558.

Gellatly LS, Hancock EWR. Pseudomonas aeruginosa : new insights into pathogenesis and host defenses. Pathogens and Disease 2013;67, (1):159-173

Othman N, Babakir-Mina M, Noori CK, Rashid PY. Pseudomonas aeruginosa infection in burn patients in Sulaimaniyah, Iraq: risk factors and antibiotic resistance rates. J Infect Develop Count 2014;8(11): 1498-1502.

Alp E, Coruh A, Gunay GK, Yontar Y, Doganay M. Risk factors for nosocomial infection and mortality in burn patients: 10 years of experience at a university hospital. J burn Care Res 2012; 33: 379.

Nathwani D, Raman G, Sulham K, Gavaghan M, Menon V. Clinical and economic consequences of hospital-acquired resistant and multidrug-resistant Pseudomonas aeruginosa infections: a systematic review and meta-analysis. Antimicrob Resist Infect Control 2014; 3: 32.

Lu Q, Eggimann P, Luyt CE, Wolff M, Tamm M, et al. Pseudomonas aeruginosa serotypes in nosocomial pneumonia : prevalence and clinical outcomes. Critical Care 2014;2014;18(1):17.

Chuang CH, Janapatla RP, Wang YH., Chang HJ, Huang YC, et al. Pseudomonas aeruginosa-Associated Diarrheal Diseases in Children. Pediatr Infect Dis J. 2017; 36(12):1119-1123.

Moore NM, Flaws ML. Antimicrobial resistance mechanisms in Pseudomonas aeruginosa. Clin Lab Sci 2011; 24: 47-51.

Strateva T, Yordanov D. Pseudomonas aeruginosa – a phenomenon of bacterial resistance. J Med Microbiol 2009; 58: 1133–1148.

McDougall DA, Morton AP, Playford EG. Association of ertapenem and anti pseudomonal carbapenem usage and carbapenem resistance in Pseudomonas aeruginosa among 12 hospitals in Queensland, Australia. J Antimicrob Chemother 2013; 68(2):457-60.

Mahfoud M, Al Najjar M, Hamzeh AR. Multidrug resistance in Pseudomonas aeruginosa isolated from nosocomial respiratory and urinary infections in Aleppo, Syria. J Infect Develop Count 2018; 9(2):210-3.

Mansour SA, Eldaly O. Jiman-Fatani A, Mohamed ML, Ibrahim EM. Epidemiological characterization of P. aeruginosa isolates of intensive care units in Egypt and Saudi Arabia. EMHJ 2013;19(1), 71-80 .

Elmanama AA, Laham NA, Tayh GA .Antimicrobial susceptibility of bacterial isolates from burn units in Gaza. Burns 2013; 39: 1616.

Hamze M, Mallat H, Dabboussi F, Achkar M. Antibiotic susceptibility and serotyping of clinical Pseudomonas aeruginosa isolates in northern Lebanon. IAJAA 2012;4(2):1-6.

Al-Hajje A, Ezedine, M, Hammoud H, Awada S, Rachidi S, et al. Current status of nosocomial infections in the Lebanese Hospital Center, Beirut. E M H J 2012; 18(5):495-500.

Salyers AA, Moon K, Schlessinger D. The human intestinal tract – a hotbed of resistance gene transfer ? Clin Microbiol News 2007; 29: 25-30.

Susanne Schjørring , Karen A. Krogfelt. Assessment of Bacterial Antibiotic Resistance Transfer in the Gut.. Int J Microbiol 2011; Article ID 312956,

Potron A, Poirel L, Nordmann P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: Mechanisms and epidemiology. Int J Antimicrob Agents 2015; 45:568-85.

Poole K. Pseudomonas aeruginosa: resistance to the max .Frontiers in Microbiol 2011;2:65.

Farshadzadeh Z, Khosravi, AD, Alavi, SM, Parhizgari N, Hoveizavi H. Spread of extended-spectrum β-lactamase genes of blaOXA-10, blaPER-1 and blaCTX-M in Pseudomonas aeruginosa strains isolated from burn patients. Burns 2014; 40(8):1575-80.

Poirel L, Nordmann P, Lagrutta E,Cleary T, Munoz-Price LS. Emergence of KPC-producing Pseudomonas aeruginosa in the United States. Antimicrob Agents Chemother 2010;54:3072.

Jiang X, Zhang Z, Li M, Zhou D, Ruan F, Lu Y. Detection of Extended-Spectrum β-Lactamases in Clinical Isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2006;50(9):2990–2995.

Rafiee R, Eftekhar F, Tabatabaei SA, Tehrani D. Prevalence of Extended-Spectrum and Metallo β-Lactamase Production in AmpC β-Lactamase Producing Pseudomonas aeruginosa Isolates From Burns. Jundishapur J Microbiol 2014;7(9), e16436.

Hong DJ, Bae IK., Jang I.-H, Jeong SH, Kang H.-K, et al. Epidemiology and Characteristics of Metallo-β-Lactamase-Producing Pseudomonas aeruginosa. Infect Chemother 2015; 47(2), 81–97.

Zhao WH, Hu, ZQ. Acquired metallo-β-lactamases and their genetic association with class 1 integrons and ISCR elements in Gram-negative bacteria. Future Microbiol 2015; 10:873-87.

Poole, K. Pseudomonas aeruginosa: resistance to the max .Frontiers Microbiol 2011; 2:65.

Voor in ‘t holt AF, Severin JA, Lesaffre EMEH, Vos MCA Systematic Review and Meta-Analyses Show that Carbapenem Use and Medical Devices Are the Leading Risk Factors for Carbapenem-Resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 2014;58(5): 2626–2637.

Lautenbach E, Synnestvedt M., Weiner MG., Bilker WB, Vo L, et al. Imipenem resistance in Pseudomonas aeruginosa: emergence, epidemiology, and impact on clinical and economic outcomes. Infect Control Hosp Epidemio 2013; 31:47-53.

Shehabi AA, Haider AA, Fayyad MK. Frequency of antimicrobial resistance markers among Pseudomonas aeruginosa and Escherichia coli isolates from municipal sewage effluent water and patients in Jordan. IAJAA 2011;1:1-8 .

Aljaafreh Y L. Otitis External Infection Among Jordanian patients with emphasis on Pseudomonas aeruginosa. MSc. Dissertation, School of Medicine, The University of Jordan, 2018.

Noor Issam Shishtawi. Detection of metallo- β -lactamases (MBLs) and virulence factors among P. aeruginos isolates from intestinal tract of infants. MSc thesis, School of Medicine,The Jordan University, Amman, 2018.

Masaadeh HA, Jaran AS. Incident of Pseudomonas aeruginosa in post-operative wound infection. American J Infect Dis 2009; 5:1-6.

Elnasser AZ, AlAseel SM. Antibiotic resistance of Psuedomonas aeruginosa Isolayes from Patients in King Abdulla University Hospital in Jordan. J Chemother 2009;21(3):356-539.

Mohammed N. Battikhi, Samih I. Ammar. Otitis externa infection in Jordan Clinical and microbiological features. Saudi Med J 2004; Vol. 25 (9):1199-1203.

Wassef M. El Mahallawy H, Zafer MM, Ghaith D, Abdel hamid R. Lab Based Surveillance of Multidrug Resistant Pseudomonas aeruginosa in Cairo University Hospitals, Egypt. J Microbiol Experiment 2015;2

(2):1-5.

Al Bayssari C, Diene SM, Loucif L, Gupta SK, Dabboussi F, et al. Emergence of VIM-2 and IMP-15 Carbapenemases and Inactivation of OprD Gene in Carbapenem-Resistant Pseudomonas aeruginosa Clinical Isolates from Lebanon. Antimicrob Agents Chemother 2014; 58(8): 4966-4970.

Downloads

Published

2019-02-09

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>